Diabetes mellitus is a serious chronic disease that occurs because the pancreas does not produce enough insulin, or when the body cannot effectively use the insulin it produces. Risk factors for DM are age, gender, family history, obesity, central obesity, hypertension, dyslipidemia, lack of physical activity, unhealthy diet and smoking. Indonesia was ranked the sixth highest prevalence of Diabetes Mellitus in the world in 2017, namely 2%, East Java 2.6% and Blitar Regency 2.6%. The high prevalence rate of DM in Blitar Regency which exceeds the national prevalence is a challenge that must be faced, because the target of the Sustainable Development Goals (SDGs) in 2030 is a reduction of one third of premature deaths due to non-communicable diseases. The purpose of this study was to analyze the risk factors for Diabetes Mellitus in Blitar Regency. Method: Quantitative research design, using secondary data with the Non-Probability Purposive Sampling method, the number of samples of 400 samples and analyzed using the Case Control method. The results of statistical tests showed that age, family history, obesity, central obesity and hypertension were associated with DM. While gender is not related to the incidence of DM. Based on the results of the multivariate test, it is known that the most dominant factors affecting the incidence of DM in Blitar Regency are family history, age> 45 years, hypertension, and central obesity. It is suggested that future studies use a longitudinal cohort design to determine whether risk factors actually correlate with effect factors and to see a clear causal relationship.
In early 2020, the world was shocked by the Covid-19 Pandemic which was caused by the Corona SARS-CoV-2 virus and has infected more than 24 million people worldwide, with a death toll of more than 800 thousand people. 99% of these deaths are caused by comorbidity factors. Diabetes is the second comorbidity after hypertension with a death rate three times that of sufferers in general, namely 7.3% versus 2.3% (Perkeni, 2020). Indonesia was ranked the sixth highest prevalence of Diabetes Mellitus in the world in 2017 after China, India, the United States, Brazil and Mexico, namely 2% or 10.3 million sufferers. The prevalence of diabetes deaths in Indonesia is the second highest after Sri Lanka. The prevalence of Diabetes Mellitus based on doctor's diagnosis in population aged ≥ 15 years increased from 1.5% in Riskesdas 2013 to 2% in Riskesdas 2018. The prevalence of Diabetes Mellitus in East Java ranks fifth out of 38 provinces, namely 2.6% in 2018, an increase from 2.1% in 2013. The prevalence of Diabetes Mellitus in Blitar Regency is ranked 23 out of 38 districts / cities or the same with an average prevalence in East Java of 2.6%, an increase from 1.2% in 2013. Blitar Regency, with a population of 1,160,677 people in 2019, has a target population of ≥15 years of age of 907,255 people. With a prevalence of 2.6%, it is estimated that people with Diabetes Mellitus in Blitar Regency are 23,589 people, but 18,871 people have been diagnosed, so it is estimated that there are 4,718 people who are not diagnosed and do not know they have diabetes.

The high prevalence rate of Diabetes Mellitus in Blitar Regency (2.6%) which exceeds the 2% National prevalence is a challenge that must be faced, because the target of the Sustainable Development Goals (SDGs) in 2030 is a reduction of one third of premature deaths due to non-communicable diseases. The data states that 80% of diabetes incidents can be prevented but 2/3 of people with diabetes do not know they have diabetes (Kemenkes RI, 2019). The alleged cause of the problem in this case is the lack of prevention efforts based on awareness of the Diabetes Mellitus risk factors. Therefore, researchers are interested in conducting a study: "Analysis of Risk Factors for Diabetes Mellitus in Blitar Regency", so that cases of Diabetes Mellitus can be prevented from an early age. The formulation of the problem in this study is, what is the most dominant risk factor affecting the incidence of Diabetes Mellitus in Blitar Regency? Based on the background and description above, the objectives of this study are: general purpose: to analyze the risk factors for Diabetes Mellitus in Blitar Regency, specific objectives: identifying the most dominant risk factors affecting the incidence of Diabetes Mellitus in Blitar Regency. This research is in accordance with what was conducted by Nur Isnaini7, et al, in 2018, the risk factors affect the incidence of type two Diabetes mellitus, with the results of the study that the risk factors that are proven to affect the incidence of type two DM in the Work Area of Puskesmas I Wangon are family history of DM (OR = 10.938), unhealthy diet (OR = 0.424), age ≥ 45 years (OR = 0.312), obesity BMI (OR = 0.297), low education level (OR = 0.272). Risk factors that are not proven to affect the incidence of type two diabetes are work, physical activity, exposure to smoke, and blood pressure.

Other research related to Diabetes Mellitus risk factors was also conducted by Vanesa Bellou8, et al, 2018, Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyzes, obtained the results of causal effects that were highly suggestive of the BMI variable, blood pressure. systolic, serum gamma-glutamyl transferase, and waist circumference. A causal relationship was also claimed for birth weight, but a relatively small number of T2DM cases were included in this analysis. The effects observed for alcohol intake, coffee intake, serum CRP, serum ferritin, serum uric acid and serum vitamin D were not causal. Milk intake shows weak evidence and shows no causal effect.

Similar research was also conducted by Reshma Patil9, et al, India 2019, Risk factors for type 2 diabetes mellitus: An urban perspective, with the results of the study that there is a significant increase in the prevalence of diabetes with increasing age (ages 20-34 years: 1.66 %, 35-49 years: 7.53%, ≥50 years: 15.66%, and P <0.05). In addition, male gender, obesity, waist circumference, WHR, and diabetes mellitus were found to be statistically significant.
Based on some of the studies above, it is known that risk factors such as increasing age, family history of diabetes mellitus, lack of physical activity, and central obesity are the most common factors found in diagnosed cases of diabetes mellitus. Therefore, lifestyle changes and awareness of risk factors are needed to control diabetes.

RESEARCH METHODS

The design of this research is quantitative research, using secondary data with the Non-Probability Purposive Sampling method, and analyzed using the case control method. The population of this study were people aged >15 years in January 2020 and living in the Blitar Regency area. Total population: 907,255 people. The sample is the population aged >15 years who live in Blitar district and have been inspected for NCD in Posbindu and have complete data on record, the number of samples is 400 people. The dependent variable is the incidence of Diabetes Mellitus with a nominal data scale, the independent variables are age, gender, family history, obesity, central obesity and hypertension, with a nominal data scale. The statistical test uses the Logistic Regression test which includes univariate analysis, bivariate analysis, and multivariate analysis.

RESEARCH RESULT

Distribution of Respondents Based on Variables

<table>
<thead>
<tr>
<th>Variabel</th>
<th>DM</th>
<th>Non-DM</th>
<th>P value</th>
<th>OR</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≤ 45 years</td>
<td>68</td>
<td>34</td>
<td>141</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td>Age >45 years</td>
<td>132</td>
<td>66</td>
<td>59</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Gender Male</td>
<td>68</td>
<td>34</td>
<td>81</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>Gender Female</td>
<td>132</td>
<td>66</td>
<td>119</td>
<td>59.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Family History</td>
<td>No family history</td>
<td>148</td>
<td>74</td>
<td>187</td>
<td>93.5</td>
</tr>
<tr>
<td></td>
<td>There is a family history</td>
<td>42</td>
<td>26</td>
<td>13</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Obesity</td>
<td>Non-Obesity</td>
<td>112</td>
<td>56</td>
<td>138</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Obesity</td>
<td>88</td>
<td>44</td>
<td>62</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Central Obesity</td>
<td>Non-Central Obesity</td>
<td>82</td>
<td>41</td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Central Obesity</td>
<td>118</td>
<td>59</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Hipertension</td>
<td>Non-Hipertension</td>
<td>119</td>
<td>59.5</td>
<td>163</td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td>Hipertension</td>
<td>81</td>
<td>40.5</td>
<td>37</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Effect of Variables on the Incidence of Diabetes Mellitus

Table 2: Effect of variables on the incidence of diabetes mellitus
Most Dominant Risk Factors Affecting the Incidence of Diabetes Mellitus

Table 3: Prediction Model of Diabetes Mellitus in Blitar Regency

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>Wald</th>
<th>Sig</th>
<th>Exp (B)</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.208</td>
<td>26.408</td>
<td>0.0001</td>
<td>3.345</td>
<td>2.111 - 5.303</td>
</tr>
<tr>
<td>Family History</td>
<td>1.427</td>
<td>16.743</td>
<td>0.0001</td>
<td>4.164</td>
<td>2.103 - 8.247</td>
</tr>
<tr>
<td>Central Obesity</td>
<td>0.610</td>
<td>7.100</td>
<td>0.008</td>
<td>1.845</td>
<td>1.175 - 2.884</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.558</td>
<td>4.472</td>
<td>0.034</td>
<td>1.730</td>
<td>1.042 - 2.893</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.224</td>
<td>42.897</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Effect of Age on the Incidence of Diabetes Mellitus

The results of the analysis in this study showed that respondents aged ≤ 45 years in the DM group were 68 respondents (34%) and the non-DM group were 141 respondents (70%). Respondents aged >45 years in the DM group were 132 respondents (66%) and the non-DM group were 59 respondents (29.5%). Based on this data, it can be seen that the percentage of DM sufferers is higher in respondents aged >45 years compared to respondents aged ≤ 45 years who tend not to suffer from diabetes.

Based on the results of data analysis, the p value is 0.0001. Based on this value, because the p value <0.05, it can be concluded that there is a relationship between age and the incidence of diabetes mellitus. The OR (Odds Ratio) value shows how much influence age has on the incidence of DM. The OR value of the data above shows a value of 4.639, meaning that respondents aged >45 years are 4.639 times more at risk than those aged ≤ 45 years. Respondents aged >45 years were at least 3.042 times more likely to suffer diabetes and the greatest risk was 7.073 times suffer from diabetes.
Effect of Gender on the Incidence of Diabetes Mellitus

The results of the analysis in this study showed that male respondents in the DM group were 34% and the non-DM group was 40.5%. Respondents with female gender in the DM group were 66% and the non-DM group was 59.5%. Based on these data, it can be seen that diabetes sufferers are common in women.

Based on the results of data analysis, the p value was 0.179. Based on this value, because the p value > 0.05, it can be concluded that there is no relationship between gender and the incidence of diabetes mellitus. The OR (Odds Ratio) value of the data above shows a value of 0.757, which means that respondents with female gender are 0.757 times more at risk than respondents with male gender. Respondents with the female gender were at least 0.504 times more likely to suffer from diabetes and the greatest risk was 1.136 times more likely to suffer from diabetes.

Family History Influences Against the Incidence of Diabetes Mellitus

The results of the analysis in this study showed that the respondents who had no family history in the DM group were 74%, and those in the non-DM group were 93.5%. Respondents with a family history of diabetes mellitus in the DM group were 26% and the non-DM group was 6.5%. Based on these data, it can be seen that there are more DM patients in the group with a family history.

Based on the results of data analysis, the p value is 0.0001. Based on the p value <0.05, it can be concluded that there is a relationship between family history and DM to the incidence of DM. The OR (Odds Ratio) value of the data above shows a value of 5.054, meaning that respondents who have a family history of DM are 5.054 times more at risk than those who do not have a family history of DM. Respondents who have a family history of diabetes are at least 2.652 times more likely to suffer from diabetes and the greatest risk of suffering from diabetes is 9.632 times.

The Effect of Obesity on the Incidence of Diabetes Mellitus

The results of the analysis in this study showed that non-obesity respondents in the DM group were 56% and in the non-DM group were 69%. Respondents with obesity in the DM group were 88% and the non-DM group was 31%. Based on these data, it can be seen that there are more DM patients in the Obesity group.

Based on the results of data analysis, the p value was 0.007. Based on this value, because the p value <0.05, it can be concluded that there is a relationship between obesity and the incidence of DM. The OR (Odds Ratio) value of the data above shows a value of 1.749, which means that respondents with obesity have a risk of 1.749 times than respondents who are not obese. Respondents who were obese were at least 1,161 times more likely to suffer DM and the greatest risk of suffering from diabetes was 2,634 times.

Effects of Central Obesity Against the Incidence of Diabetes Mellitus

The results of the analysis in this study showed that the respondents of Central Non-Obesity in the DM group were 41% and the non-DM group was 65%. Respondents with central obesity in the DM group were 59% and the non-DM group was 35%. Based on these data it can be seen that DM patients are more in the central obesity group.

Based on the results of data analysis, the p value is 0.0001. Based on this value, because the p value <0.05, it can be concluded that there is a relationship between central obesity and the incidence of diabetes mellitus. The OR (Odds Ratio) value of the data above shows a value of 2.672, which means that respondents with central obesity have a risk of 2.672 times than respondents with no central obesity. Respondents with central obesity were at least 1.783 times more likely to suffer from diabetes mellitus and the greatest risk was 4.006 times more likely to suffer from diabetes mellitus.

The Effect of Hypertension on the Incidence of Diabetes Mellitus
The results of the analysis in this study showed that non-hypertensive respondents in the DM group were 59.5% and the non-DM group was 81.5%. Respondents with hypertension in the DM group were 40.5% and the non-DM group was 18.5%. Based on these data, it can be seen that DM patients are more in the hypertension group.

Based on the results of data analysis, the p value is 0.0001. Based on this value, because the p value <0.05, it can be concluded that there is a relationship between hypertension and the incidence of diabetes mellitus. The OR (Odds Ratio) value of the data above shows a value of 2.999, which means that respondents with hypertension have 2.999 times the risk of respondents without hypertension. Respondents with hypertension were at least 1,902 times more likely to suffer from diabetes mellitus and the greatest risk was 4.727 times of suffering from diabetes mellitus.

The Most Dominant Risk Factors Affecting the Incidence of DM

From the results of the overall multivariate analysis, the regression equation obtained is as follows:

\[
\text{Diabetes mellitus logit} = -1.224 + (1.427 \times \text{family history}) + (1.208 \times \text{age > 45 years}) + (0.558 \times \text{hypertension}) + (0.610 \times \text{central obesity}).
\]

The family history variable is the first variable that has the greatest influence on the incidence of diabetes mellitus because it has the largest logit value of the other variables, namely 4.164, which means that people who have a family history of diabetes have a chance to experience diabetes mellitus by 4,164 times compared to people who have no history. family with diabetes, after being controlled / influenced by variables of age, gender, obesity, central obesity and hypertension.

The age variable is the second variable that most influences the incidence of diabetes mellitus with a logit value of 3,345, meaning that people aged > 45 years or the older a person has a chance to experience diabetes mellitus by 3,345 times compared to people aged ≤45 years, after being controlled / influenced by gender, family history, obesity, central obesity and hypertension.

The central obesity variable is the third variable that has the greatest influence on the incidence of diabetes mellitus with a logit value of 1.175, meaning that people with central obesity have a chance to experience diabetes mellitus by 1,175 times compared to people who have normal abdominal circumference or do not have central obesity, after controlled / influenced by variables of age, gender, family history, obesity, central obesity and hypertension.

The hypertension variable is the fourth variable that has the greatest influence on the incidence of diabetes mellitus with a logit value of 1.042 which means that people who suffer from hypertension have a chance to experience diabetes mellitus by 1,042 times compared to people who have normal blood pressure or do not suffer from hypertension, after being controlled / influenced by variables of age, gender, family history, obesity, and hypertension.

Obesity variable is the fifth variable that most influences the incidence of diabetes mellitus with an OR value of 1.749 meaning that people with obesity have a chance to experience diabetes mellitus by 1.749 times compared to people who have normal weight or are not obese, after being controlled / influenced by variables age, gender, family history, obesity, and central obesity.

The gender variable has a p value> 5%, namely 0.179, which means that the gender variable is proven to have no relationship to the incidence of diabetes mellitus. The OR value of the gender variable also has a low value, namely 0.757, which means that it does not significantly affect the incidence of Diabetes Mellitus.

Based on the analysis, the determinant coefficient (R square) was 0.269, meaning that the regression model obtained could explain 26.9% of the variation in the dependent variable of diabetes mellitus. Thus, the variables age, sex, family history, obesity, central obesity and hypertension, can only explain the variation in the variable diabetes mellitus by 26.9%. While the remaining 73.1% is explained by other variables not examined.

CONCLUSIONS AND RECOMMENDATIONS
Conclusion
Risk factors that have a relationship with the incidence of Diabetes Mellitus in Blitar Regency are family history, age > 45 years, hypertension, central obesity and obesity. Meanwhile, gender risk factor has no known relationship with the incidence of Diabetes Mellitus in Blitar Regency. The most dominant risk factors affecting the incidence of Diabetes Mellitus in Blitar District are family history, age > 45 years, hypertension and central obesity.

Suggestion
It is suggested to the Blitar District Health Office to activate and expand the reach of NCD Posbindu so that it is equivalent to the activities of the Toddler Posyandu, conduct massive screening in the community about Non-Communicable Diseases in the family tree, form and reactivate sports groups down to the village, hamlet, RT RW level, developing CERDIK behavior in the community by facilitating health check services, regulation of smoke-free areas, sports facilities and infrastructure, healthy canteens in each agency and providing counseling services in health facilities.

The next researcher is advised to examine the variables not examined in this study because in theory these variables are related to diabetes mellitus such as dyslipidemia and exposure to cigarette smoke, so that in the next Diabetes Mellitus study, to confirm Diabetes respondents on GDA examination by examining blood glucose. Fasting is more accurate, and so in the next Diabetes Mellitus study using a longitudinal cohort design to find out whether the risk factor actually correlates with the effect factor and to see a clear causal relationship.

REFERENSI

Books:

Websites:

Journals:
Guillermo E. Umpierrez, ADA 2017, Management of Inpatient Hyperglycemia and Diabetes in Older Adults, https://care.diabetesjournals.org/content/40/4/509
Alexandra Kautzky-Willer, NCBI 2016, Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890267/
Sue-Hsien Chen1, et al, BMJ Journal 2019, Abdominal obesity and hypertension are correlated with health-related quality of life in Taiwanese adults with metabolic syndrome https://drc.bmj.com/content/8/1/e000947

Technical and Research Reports:
Min-Ju Kim, PMC 2015, Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644940/

Online Newspaper Articles: